Addressing Internal "Shuttle" Effect: Electrolyte Design and Cathode Morphology Evolution in Lithium-Sulfur Batteries

Perla B. Balbuena
Texas A&M University
June 8th, 2017

Project ID #: ES283

Overview

Timeline

- Start date: October 1, 2014
- End date: September 30, 2017
- Percent complete: 83%

Budget

- Total funding: \$990,000
 - DOE share: \$990,000
 - Contractor share: Personnel
- Funding received
 - FY16: \$325,189
 - FY 17:\$379,466

Barriers

- Barriers/targets addressed
 - Loss of available capacity
 - Materials evolution during cycling
 - Lifetime of the cell

Partners

- Interactions/ collaborations
- Partha Mukherjee (TAMU Co-PI)
- Vilas Pol (Purdue Univ., Co-PI)
- M. Vijayakumar (PNNL)
 - Project lead: TAMU

Relevance/Objectives

- Objective: Overcome Li-metal anode deterioration issues via protective passivation layers and minimizing polysulfide (PS) shuttle with advanced cathode structure design.
- FY 2017 goals: Understand role of electrolyte including PS on anode reactivity; Li₂S deposition modes and electronic conductivity; effects of S loading, cathode morphology, and S to electrolyte ration on electrochemical performance; experimental tests of membranes for PS retention; cell fabrication and test.

Addressing targets and barriers:

 New insights regarding the role of the electrolyte on Li plating and cathode passivation by Li₂S. Further investigation and test of PS retention materials.

Impact:

 Alternative electrolyte chemistries and improved cathode architectures to deliver Li/S cells operating for 500 cycles at efficiency greater than 80%.

Relevance/Milestones

- a) Electrochemical modeling of cell performance with electrolyte and cathode parametric properties (Q1/Y3-Dec. 16) Completed
- b) Development of stable electrolytes. (Q2/Y3- March 17). In progress.
- c) Produce 3-5 grams of C/S composite material.
 (Q3/Y3-June 17). In progress.
- d) Complete the scale-up of cathode composites, cell construction and testing. (Q4/Y3-Sept.17)

Approach/Strategy

Overall <u>Technical Approach/Strategy</u>:

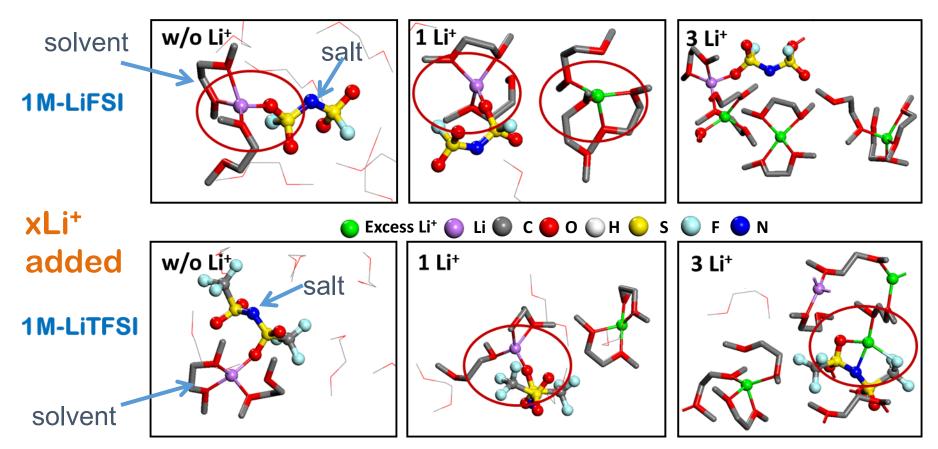
- A mesoscale model of electrode mesoporous structures based on stochastic reconstruction allows virtual screening of cathode microstructural features and effects on electronic/ionic conductivity and morphological evolution.
- Interfacial reactions at the anode due to the presence of polysulfide species and effects on Li deposition characterized with ab initio methods.
- Structural and energetic information from atomistic-level studies used in mesoscopic-level analysis of cathode interfacial reactions.
- Novel materials for PS retention along with tuned porosity of cathode structures fabricated and tested on the basis of mesoscale and atomistic modeling efforts.

Progress towards FY17 milestones and Go/No Go decisions: New understanding of interfacial anode chemistry and morphology effect on Li₂S deposition reactions at the cathode. Analysis and test of materials for PS retention at the cathode.

Technical Accomplishments: Barriers Addressed

Lifetime of the cell

 Anion, solvent, and PS decomposition at the Li metal anode in concentrated electrolyte solutions and effects on Li deposition during plating


Loss of available capacity

- Effects of S loading, S/electrolyte ratio, and cathode morphology on cell performance
- Main electronic carriers in Li₂S deposits

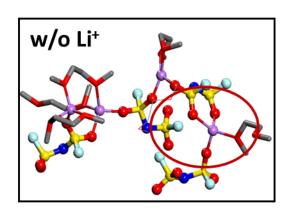
PS retention at cathode

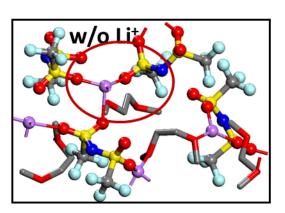
Identified and tested specific materials to retain soluble PS species at the cathode

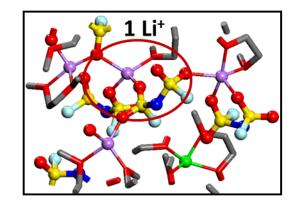
Technical Accomplishments Solvation effects in 1M solutions

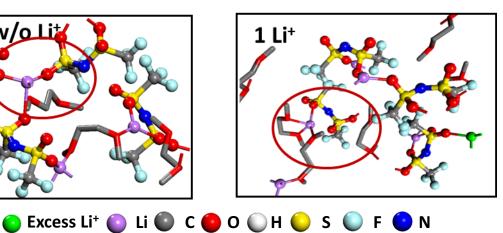
Salts do not totally dissociate (agrees with our DFT prediction) Excess of Li⁺ → compact and complex coordinated networks First shell of Li⁺ dominated by solvent

Milestone Q2/Y3: Development of stable electrolytes




Technical Accomplishments Solvation effects in 4M solutions

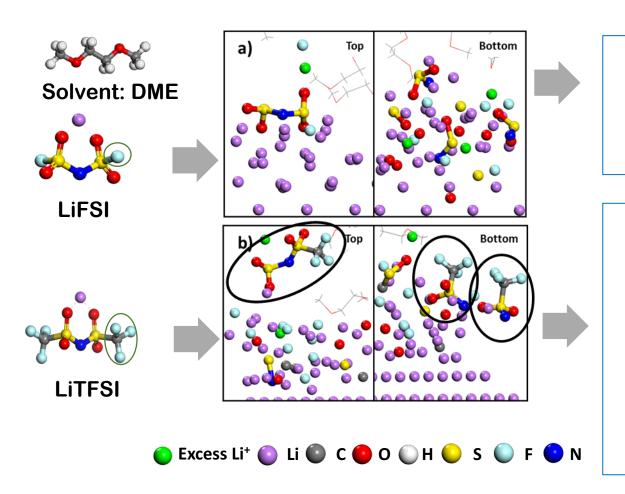

4M-LiFSI


xLi⁺ added

4M-LiTFSI

Much more complex networks than those for 1M

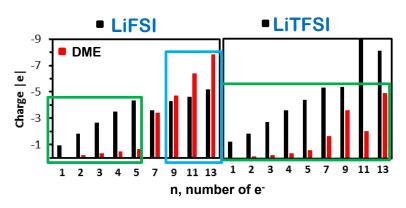
Almost all the species interconnected


Some salt molecules transition from trans-structures to cis-

Mixed coordination numbers (solvent + salt)

Milestone Q2/Y3: Development of stable electrolytes

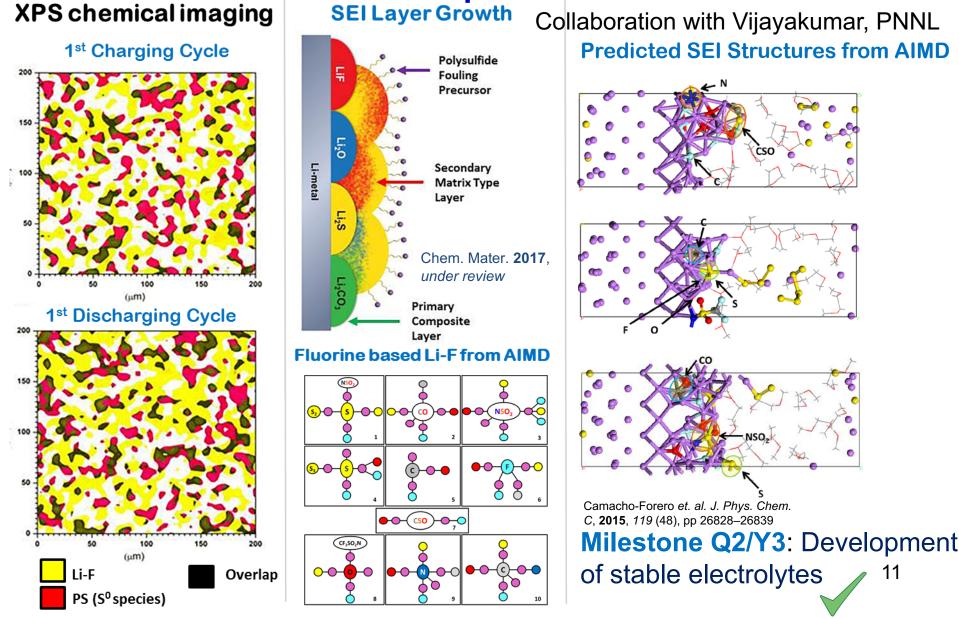
Technical Accomplishments Solvation & reaction at the Li surface



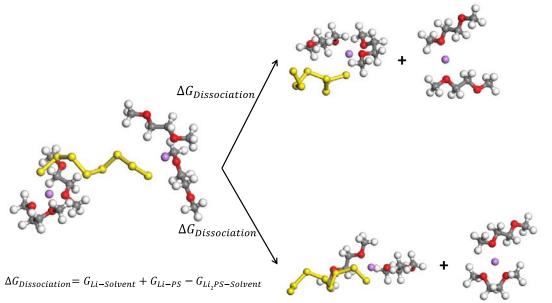
- More compact SEI
- All F atoms in the SEI
- LiFSI → LiF-based SEIlayer more efficiently than LiTFSI
- Large fragments:
 CF₃SO₂N and
 CF₃SO₂NSO₂
- C-based compounds in SEI
- Several CF₃ groups remain
- Higher charge transfer found from reactions involving reduction of Catoms

Milestone Q2/Y3: Development of stable electrolytes

Technical Accomplishments: Solvent vs. Salt Reduction – Effects of Concentrated Salt Solutions

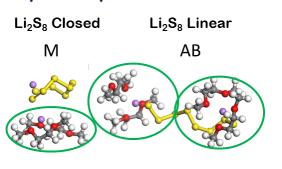

DME reduces much later than the anion; and the extent of the reduction depends on the salt

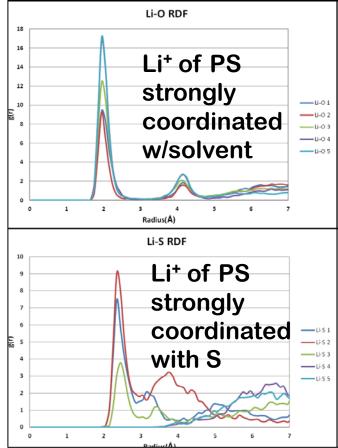
- In 4M solutions, *Li coordination shell is mixed* (solvent and salt, & PS species in Li/S batteries). Very complex networks formed
- Near the electrode surface, work for desolvation (during plating) changes because the salt components are much easily decomposed than the solvents, → Li⁺ environment changes: it may be strongly bonded to salt decomposition products
- The simultaneous SEI formation and Li plating modify the structure of the precursors to dendrite formation



Technical Accomplishments: XPS and AIMD

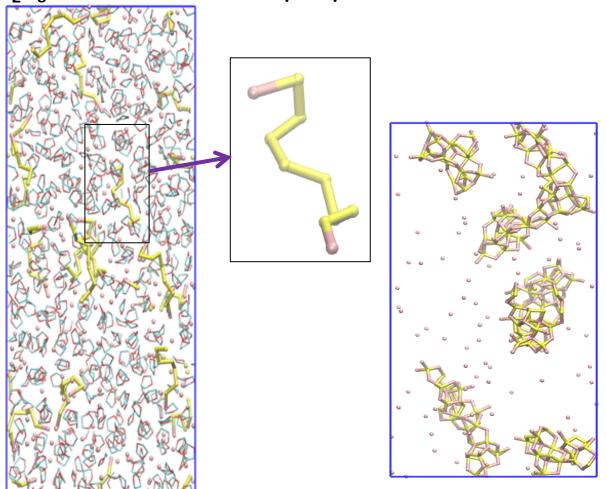
elucidate SEI structure & composition on Li surface

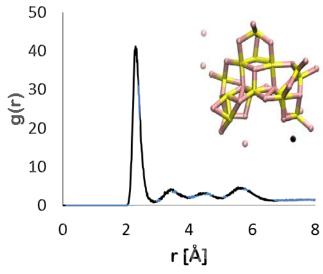



Technical Accomplishments: Mechanism of polysulfide migration

- PS anion formation is not favored in many situations
- PS most likely exists as neutral species paired with Li⁺ ions

Structures that favor Ionic Dissociation		
DME	1st Li+ ion	2nd Li+ ion
Li ₂ S ₆	N/A	N/A
Li₂S ₈ Closed	M, J	N/A
Li₂S ₈ Linear	S,J,Z,T,M,U,AB	N/A
DOL		
Li ₂ S ₆	N/A	N/A
Li ₂ S ₈ Closed	N/A	N/A
Li ₂ S ₈ Linear	N/A	N/A

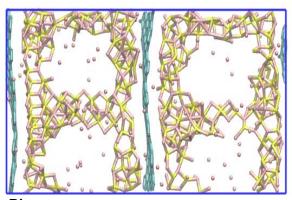




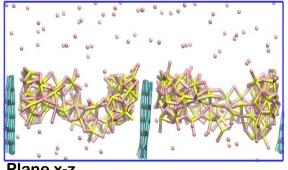
Technical Accomplishments: Mechanism of Li₂S precipitation

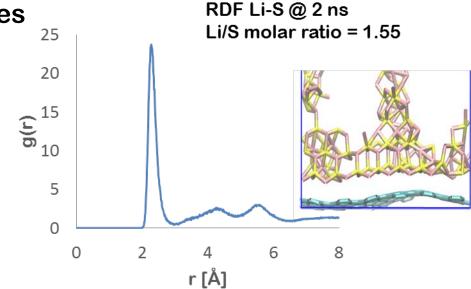
Li₂S₈ molecules in DOL liquid phase

RDF Li-S @ 2 ns Li/S molar ratio = 1.45



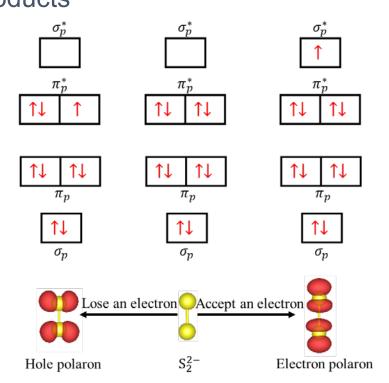
- Sulfur reduction observed
- Li/S structures formed
- Li/S structures randomly distributed in liquid phase




Technical Accomplishments: Mechanism of Li₂S precipitation

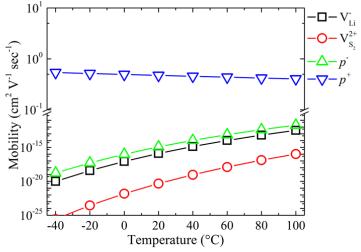
Reduction of S in 3nm carbon pores

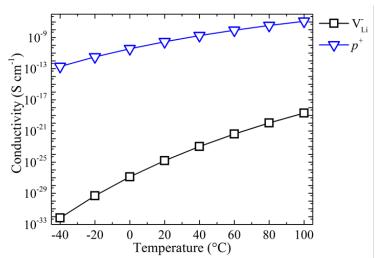
Plane x-y



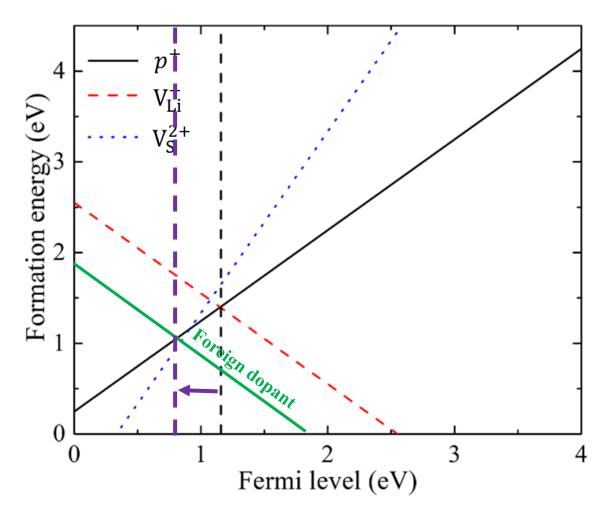
- Li/S structures weakly adhere to carbon layers
- Continuous Li/S structures bridging **Graphene layers**

Technical Accomplishments: Mechanism of Polaron Formation and Diffusion in Li₂S₂

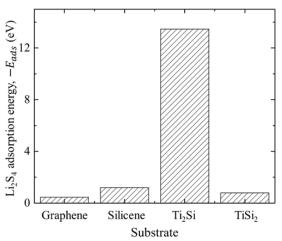

identification of charge carriers in insoluble products


Schematic diagram of S_2^{2-} polarization mechanism

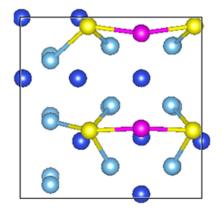
^{*}Z. Liu, P. B. Balbuena, and P. P. Mukherjee, "Revealing Charge Transport Mechanisms in Li₂S₂ for Li-Sulfur Batteries", *Journal of Physical Chemistry Letters*, **8**, 1324 (2017).



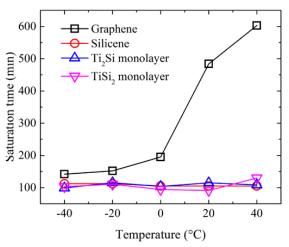
Effects of temperature on defect mobility


Effects of temperature on ionic conductivity and electronic conductivity

Technical Accomplishments: How to increase the electronic conductivity of Li₂S



A dopant may help reducing the formation energy of the main carrier of electronic charge


Technical Accomplishments: Cathode material beyond carbon?

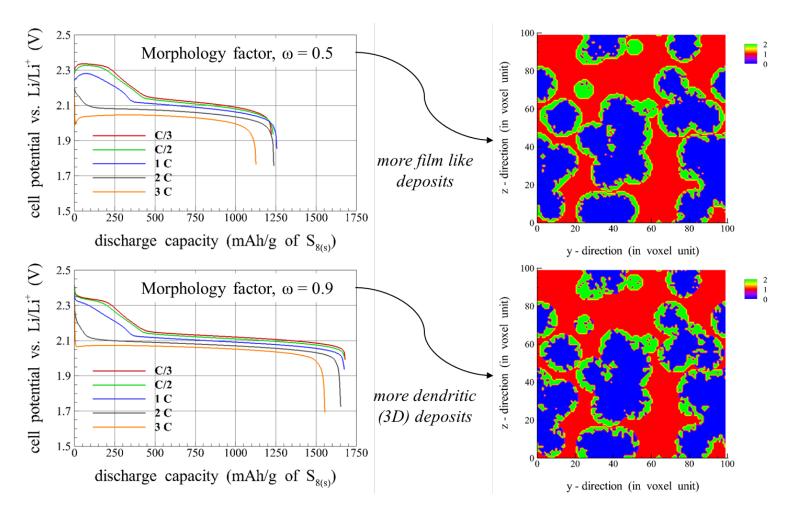
Li₂S₄ retention on different cathode surface

Li₂S₄ dissociate to LiS₂ on Ti₂Si monolayer

Surface passivation caused by Li₂S precipitation

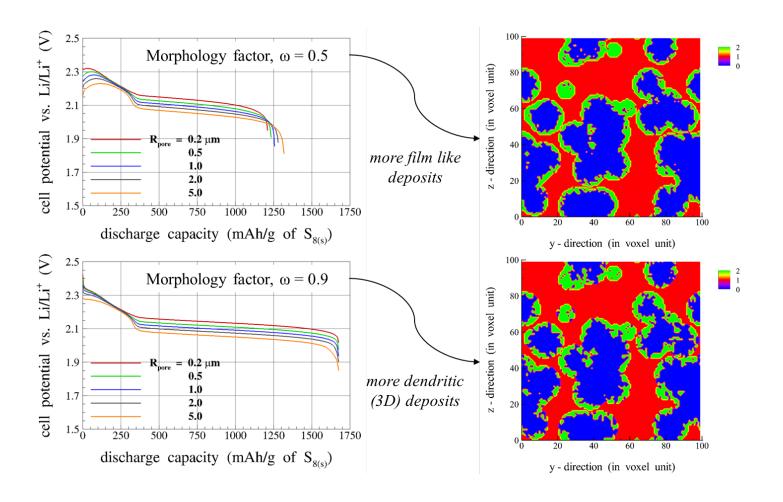
Li₂S formation on graphene: heterogeneous growth

Li₂S formation on silicone or Ti₂Si: homogeneous growth



*Liu, Balbuena and Mukherjee, J. Coordination Chemistry, 69, 2090 (2016)

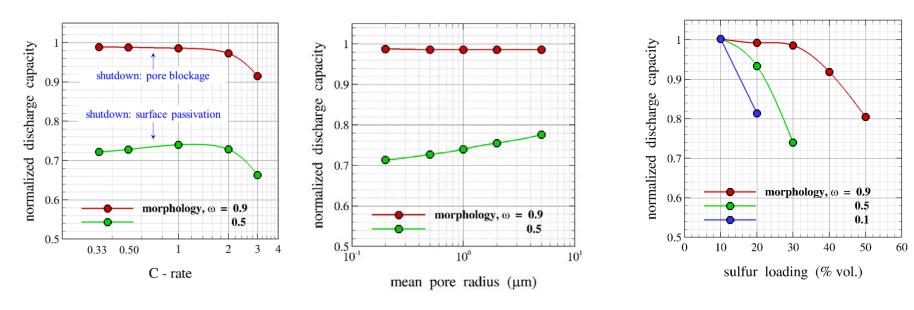
*Liu, Balbuena and Mukherjee, JOM, under review


Milestone Q2/Y1: Characterization of thermodynamics of nucleation and growth of PS deposits on the Li surface

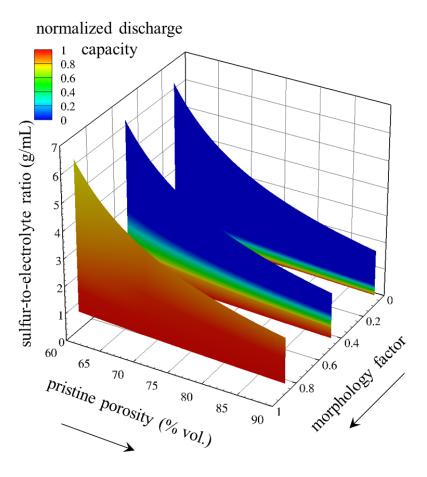
Technical Accomplishments: Effect of deposits morphology & C-rate on cell performance

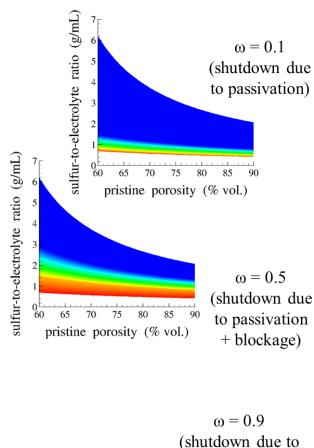
Milestone Q2/Y1: Electrochemical modeling of cell performance with electrolyte and cathode parametric properties

Technical Accomplishments: Interplay of pore size and deposits morphology


Technical Accomplishments: Interplay of sulfur loading and deposits morphology

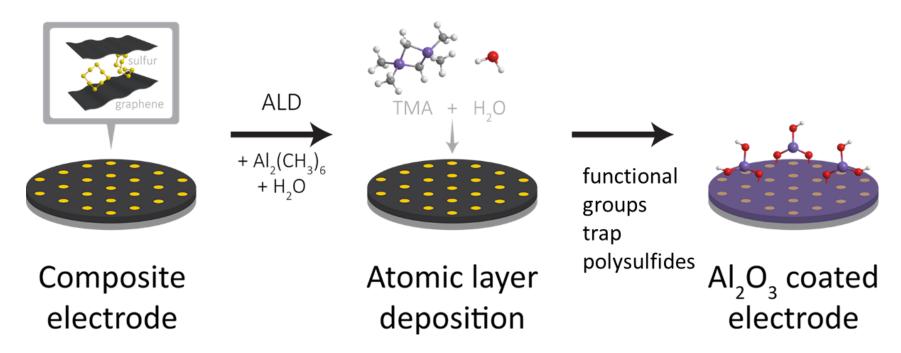
Milestone Q2/Y1: Electrochemical modeling of cell performance with electrolyte and cathode parametric properties


Technical Accomplishments Summary of Shutdown Mechanisms


 $\omega = 0 \rightarrow 2D$ film $\omega = 1 \rightarrow 3D$ precipitate (dendrite type)

Precipitates morphology leads into different shutdown mechanisms

Technical Accomplishments Regimes of Li/S operation

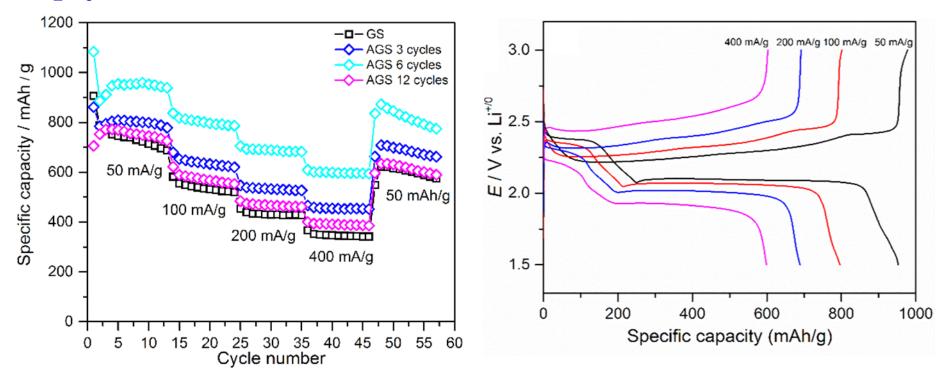


(shutdown due to pore blockage)

Milestone Q2/Y1: Electrochemical modeling of cell performance with electrolyte and cathode parametric properties

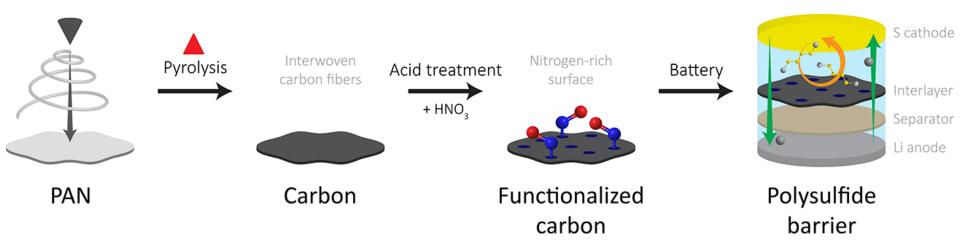
^{*}Mistry and Mukherjee, *Identifying feasible sulfur-to-electrolyte ratio* for lithium-sulfur cells: microstructural limitations, (in preparation)

Al₂O₃ coated graphene with nanosulfur: preparation



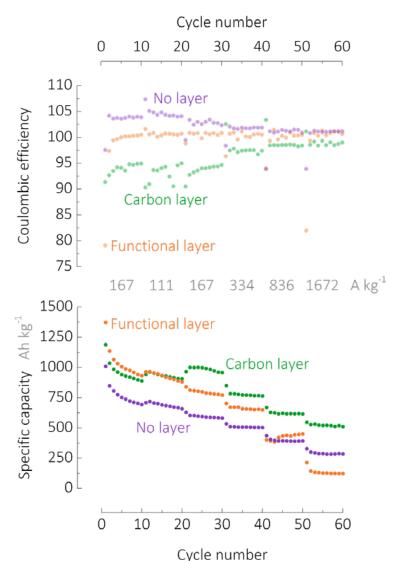
Laminates prepared with the graphene-sulfur composite, super P, and PVDF binder

Laminates were coated with Al₂O₃ via atomic layer deposition (ALD) by trimethyl Al decomposition with water


Various ALD cycle times control the effective Al₂O₃ coating thickness

Al₂O₃ coated graphene with nanosulfur: Electrochemical performance

Al₂O₃ coating increases capacity at all rates A 6-cycle ALD coating (light blue) produces the highest specific capacity As applied specific current increases, voltage hysteresis increases for 6-cycle ALD coating


Functionalized Carbon Interlayers: Preparation

Polyacrylonitrile fibers are formed and woven into a cloth-like membrane via *electrospinning*

Treatment with nitric/sulfuric acid functionalizes the surface of the cloth The functionalized cloth exhibits improved performance for Li/S batteries

Functionalized Carbon Interlayers: Electrochemical Performance

The functionalized interlayer shows the most stable Coulombic efficiency across all studied rates

The functionalized interlayer has highest initial capacity, but the carbon interlayer shows better rate capability

The functionalized interlayer improves rate capability relative to no interlayer at currents >334 A kg-1 (~ C/5 rate)

Responses to Previous Years Reviewers' Comments

Comment 1: "As with all molecular level models, the concern will be whether it represents to real-world problems in a meaningful way."

Answer: By carefully going through the current presentation, the Reviewer can verify that the molecular models are realistic, As an example, we show that our simulations are able to predict the SEI composition on a Li metal anode in presence of polysulfides, and contribute to elucidate XPS spectra (see slide 11)

Comment 2: "no much synergy between the simulations and synthesis/testing so far"

Answer: The simulations have pointed out and explained most of the issues found by the electrochemical performance experiments (for example surface passivation, pore blockage, materials used for PS retention inducing Li₂S deposition).

Responses to Previous Years Reviewers' Comments

- Comment 3: "the project team has limited collaborations."
- Comment 4: "recommended that the project team adopt the advanced characterization methods available in national laboratories to link the simulations with materials structure and morphology.
- Answer: Besides the collaborative work with ANL and PNNL mentioned in the previous report, new collaborations are in place with PNNL (Dr. Vijayakumar, XPS experiments), as suggested in Comment 4.
- Comment 5: "need of more specific plans regarding future work, such as how to identify the reasons for failures and successes of specific electrolyte compositions."
- Answer: This report contains extensive details regarding the specific question of the reviewer. We have elucidated the reasons for success of concentrated salt solutions.

Collaboration and Coordination with Other Institutions

- Purdue University: This project is a collaboration between Texas A&M
 University (Balbuena, Mukherjee) and Purdue University (Pol). The groups communicate via teleconference and site visits.
- Pacific Northwest National Laboratory (PNNL): The TAMU team interacts
 with the group of Dr. Jason Zhang regarding analysis of strategies to
 mitigate extreme Li metal reactivity. We have investigated the reasons for
 the apparent mitigation effects caused by high salt concentrations as a
 function of the nature of the salt.
- Argonne National Laboratory (ANL): Dr. Vilas Pol (Purdue) collaborates
 with the group of Dr. Jeffrey Elam and Dr. Anil Mane at ANL in the
 applications of ALD coatings for polysulfide capture at the cathode.
- Pacific Northwest National Laboratory (PNNL): The TAMU team interacts with the group of Dr. M. Vijayakumar regarding SEI characterization on LI
- metal surfaces in presence of polysulfides via XPS and AIMD simulations.

Remaining Challenges and Barriers

- Evaluate hypothesis developed in this work on effects of high salt concentrations on dendrite formation at the Li metal anode.
- Evaluate effects of dopants suggested in this work on Li₂S conductivity.
- Optimize cathode morphology to overcome shutdown effects identified in this work.
- Scale up of cathode composites.

Proposed Future Work

Rest of FY17:

- continue the development of stable electrolytes and efficient cathode morphologies
- produce 3-5gr of C/S composite and achieve capacity800 mAh/g during at least 400 cycles

Summary Slide

- Relevance: Overcome Li-metal anode deterioration issues via protective passivation layers and minimizing polysulfide shuttle with advanced cathode structure design.
- Approach: Synthesis, characterization, and testing of a C/S composite cathode guided by multiscale modeling (atomistic and mesoscopic) focusing on electrolyte composition and cathode morphology effects on cell performance.
- Technical Accomplishments: Identification of effects of high concentrated solutions on SEI formed at lithium anode surfaces and potential effects on Li dendrite morphologies; theoretical and experimental characterization of SEI formed on Li metal in presence of PS species; identification of effects of Li2S deposition modes on shutdown mechanisms. Synthesis and tests of PS retention materials.
- Collaborations: Purdue University (Co-PI); evaluation of additives, salts, and SEI (with PNNL); cathode coatings (with ANL).
- Future Work: Development of stable electrolytes; scale up cells and achieve target capacity; model effects of cathode microstructure on cell performance.